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Abstract

Electrocardiogram (ECG)-based age prediction has
emerged as a promising tool in medical AI, providing in-
sights into physiological aging and potential health risks.
While existing deep learning models have shown strong
performance on adult populations using 10-second ECG
recordings, their applicability to pediatric subjects re-
mains largely unexplored. In this study, we tackled re-
strains set by the limited availability of pediatric ECG data
by adopting a transfer learning approach: we first trained
a convolutional neural network on single heartbeats from
adult ECGs taken from the PTB-XL database. Then, we
fine-tuned it on pediatric ECGs collected at the Buzzi Chil-
dren Hospital, Milan, Italy. Our model achieved a RMSE
of 10.32 years and a MAE of 8.03 years on adult data,
which were found comparable to prior works trained on
longer segments of ECG signals. In the pediatric dataset,
the model achieved a RMSE of 2.67 years and a MAE of
1.88 years. These results suggest that meaningful age-
related features can be extracted even from single heart-
beats and that transfer learning enables effective adapta-
tion across age groups, offering a practical solution for
pediatric age estimation or in other contexts where avail-
able data might be typically more scarce.

1. Introduction

Amplitude and duration of waveforms, as measured on
the electrocardiogram (ECG), are known to be affected by
age. This phenomenon was leveraged to estimate the func-
tional age of the heart, using modeling techniques ranging
from statistics [1] to Deep Learning (DL) [2, 3]. Large
differences between the functional and chronological age

(>7 years) of the patients, estimated through neural net-
works, were found associated with higher risk of mortal-
ity [3] or cardiovascular comorbodities [2]. A review on
the topic can be found in [4]. While existing studies have
demonstrated the clinical relevance of ECG-based age pre-
diction in adults, their applicability to pediatric popula-
tions remains largely unexplored. Adapting these mod-
els to younger age groups could enhance diagnostic and
prognostic capabilities, providing developmental monitor-
ing and early detection of heart conditions. However, pe-
diatric ECGs present unique challenges due to rapid age-
related changes in morphology, hormonal shifts, and the
maturation of the cardiac conduction system. These fac-
tors complicate the development of reliable age predictors
for younger patients. So far, only a few AI models have
been specifically developed for pediatric ECGs. A recent
example is the work of Dutenhefner et al. [5], who pro-
posed a ResNet-based model for pediatric age regression,
demonstrating that error in age estimation > 2.5 years
were linked to underlying pathologies. A further signifi-
cant challenge is the usually limited availability of pedi-
atric ECG data. In this study, we trained a DL age regres-
sor on adult ECG data, and then applied transfer learning
(TL) to adapt the model so to be able to deal with pedi-
atric ECGs. In particular, instead of using the entire 10 s
diagnostic ECG, we used single 12-lead beats as input of
the age regressor. The work could be of interest for other
situations where data availability is not homogeneous.

2. Methods

2.1. Dataset and preprocessing

Two different datasets were employed in the study.
ECGs of adult subjects (“AD”) were obtained from the

Computing in Cardiology 2025; Vol 52 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2025.359



(a)

18 26 34 42 50 58 66 74 82 90
Age

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

Fr
eq

ue
nc

y
(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Age

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

Fr
eq

ue
nc

y

Figure 1: Distribution of the QRTS windows (heartbeats) used across different ages, as obtained for the study from the
PTB-XL dataset (AD, panel a) and the Buzzi Children’s Hospital pediatric ECG dataset (PE, panel b).

PTB-XL ECG dataset [6, 7], which includes standard 12-
lead 10-second ECGs, sampled at 100 Hz, from 18, 885
different patients. We selected a subset of 6, 776 ECGs of
healthy patients, reported as in normal sinus rhythm with
at least 80% confidence, and spanning an age range 18−89
years. A second pediatric dataset (“PE”) was instead col-
lected at the Buzzi Children’s Hospital in Milan, Italy. A
total of 54,399 standard 12-lead 10 seconds ECGs were
digitally collected between 2011 and 2022 (sampling rate
500 Hz) from healthy children between 0 to 15 years.

Given that the PE data were sampled at a higher rate,
we subsampled each pediatric ECG to 100 Hz. For both
PE and AD data, we applied a zero-phase, order-3 Butter-
worth band-pass filter with low and high cutoff frequen-
cies of 0.5 Hz and 40 Hz, respectively. Then, we identi-
fied the heartbeats using the gqrs detector included in the
WFDB library [7, 8]. Lastly, we divided each of the PE and
AD signal into QRST windows of duration 0.43 s, ranging
from -60 ms to 370 ms relative to each detected R peak.
The data in the PE dataset were collected in a pediatric
hospital and therefore, due to clinical practice, around half
the patients are under 1 year and the population is in gen-
eral skewed towards younger ages. Given the fact that in
this work the focus is on verifying how effectively trans-
fer learning is capable of adapting an age regressor model
from a large adult population to a smaller pediatric popu-
lation, we downsampled each pediatric age group to about
2,200 QRST windows, roughly matching the maximum
class size in the AD dataset. Overall, the total number of
QRST windows extracted were 72,420 for AD, and 35,080
for PE. Figure 1 shows their number across age. For train-
ing the DL models, the set of QRST windows for each of
AD and PE was split roughly into 90% for training and
10% for testing, with stratification, ensuring that beats be-
longing to the same patients were contained entirely within
one of the splits.

2.2. Regression models & transfer learning

The problem of age estimation was framed as a regres-
sion task, where the target variables were integer-valued
ages (for coherence with the the PTB-XL ECG where only
integer-valued ages are available). The DL model con-
sisted into two convolutional blocks, each made by a 2-d
convolutional layer (Conv2d), a batch normalization layer
(BatchNorm2d), a leaky relu (LeakyReLu) activation func-
tion, a max pooling layer (MaxPool2d), and a dropout
layer (Dropout2d). The output was then set in input to
another convolutional block, and then to a series of fully
connected layers (Linear layer - ReLU activation - Dropout
layer - Linear layer - ReLU activation - Linear layer) which
had as output a single value for the predicted age. The
input of the network was a 43 × 12 matrix, that is a sin-
gle ECG QRST window (12 leads of 0.43 s). A scheme
of the model is shown in Figure 2. As loss function, we
used the mean squared error between the predicted age and
the known age. The model was trained on the PTB-XL
train dataset (65,166 QRTS windows or heartbeats). The
training went on for 15 epochs, with a batch size of 32
and a learning rate of 10−4. Adam optimizer was config-
ured with hyperparameters β = (0.9, 0.999), ϵ = 10−8,
weight decay = 10−3.

To establish whether the model architecture was suffi-
ciently effective, we also retrained for comparison on the
same AD training set the models proposed in [2] and [3],
and compared their performance with our model. The
models described in [2] and [3] were here adapted to ac-
cept in input a single heartbeat instead of 10-second ECG
signals, as originally proposed.

After training the age regressor on the adult population,
we transferred the learned features to pediatric ECGs using
transfer learning.

Specifically, we fine-tuned the entire network without
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Figure 2: Architecture of the DL age regressor model in-
cluding convolutional blocks and linear layers.

freezing any parameters. The training process involved
31,629 QRST windows from the PE training dataset and
it was conducted for 3 epochs, with a batch size of 16 and
a learning rate of 2 ·10−5, to ensure that the network’s pre-
viously acquired knowledge was effectively retained and
adapted to the new data.

3. Results

In order to evaluate the goodness of the predictions of
our age regression model, we selected the mean absolute
error (MAE), the root mean square error (RMSE) and the
Pearson correlation coefficient (ρ) between the predicted
ages and the actual age. Specifically, on the PTB-XL test
set (7,254 QRST windows), we quantified a MAE of 8.03
years, a RMSE of 10.32 years and a ρ of 0.77. A scatterplot
showing the real and predicted ages on the adults test set
against the main diagonal line (perfect prediction, in red)
is shown in Fig. 3(left). Table 1 reports the comparison
between ρ and RMSE values of our age regressor and those
of Attia et al.’s and Lima et al.’s models trained and tested
on the same AD data.

After the transfer learning, the DL regressor proposed
in this study achieved a MAE of 1.88 years, a RMSE of
2.67 years and a ρ of 0.84 on the pediatric test set (3,451
signals). The scatterplot of the corresponding actual vs.
predicted ages is reported in Fig. 3 (right).

4. Discussion

The DL model proposed in this study, when trained
on single 12-leads heartbeats from the PTB-XL dataset
achieved a good predictive performance over a 71-year age
range, which we considered acceptable. Prediction errors
were more pronounced above 75 years (underestimation),
likely due to data scarcity in the dataset for this age range
(Fig. 1a).

Despite previous studies suggested that heart rate vari-
ability might be a relevant features for age prediction [1],
our model was able to capture meaningful age-related pat-
terns using only ECG data. In addition, the model achieved
results in line with previous studies using DL for the same

task on adults. In fact, despite using only ECG data com-
ing from a single heartbeat, our model reached a MAE of
8.03 years, while Attia et al. [2] and Lima et al. [3] re-
ported MAEs of 6.9 and 8.38 years, respectively, using all
the 10 s of diagnostic ECGs. Moreover, when we retrained
these architectures on the same dataset, the performances
of the three models became undistinguishable, as shown in
Table 1. This suggests that the information learned in these
DL models are mainly associated with the characteristics
of the ECG waveforms, and not their variability in time.

After fine-tuning the proposed model on the pediatric
ECGs using transfer learning, we achieved a RMSE of 2.67
years and a correlation coefficient ρ similar to the adult
model, indicating effective adaptation to the younger age
group. This lower RMSE, compared to the adult model,
was consistent with the narrower pediatric age range (0–15
years), where smaller errors were expected. Our model
also reached a MAE of 1.88 years, which was comparable
to the 2.65 years reported by Dutenhefner et al. [5] us-
ing entire 10 s ECGs. This seems to conform that, even
in children, age-related information is mainly contained in
the shapes of the waveform, not their evolution in time. As
shown in the scatterplot in Fig. 3, predictions closely dis-
tributes along the main diagonal (in red, dashed), though
a slight underestimation persisted in the 12–15 age range,
possibly inherited from the adult-trained representation of
information in the model (not due to the data imbalance,
as the age group were balanced in this dataset).

Overall, the transfer learning approach proved mostly
effective in preserving key features learned from adult
ECGs and adapting them to pediatric data. Retraining on
the PE dataset required only 3 epochs (versus 16 for adults)
and used a dataset roughly half of AD. This efficacy high-
lights the method’s potential in situations with limited data
availability, or in which it is necessary to adapt the model
to new datasets.

Nonetheless, our approach had its limitations. While the
primary aim was to develop a pediatric-specific age regres-
sor, a more comprehensive solution would have needed
ECG data spanning the full age range (0–17 years). How-
ever, our PE dataset included too few samples from ado-
lescents aged 16–17, limiting the model’s ability to learn
a proper representation in this age group, which was ex-
cluded by design.

5. Conclusion

The results we obtained highlight the ability of transfer
learning to adapt a well-functioning model of age regres-
sion from single-beat 12-lead ECG signals, trained on an
adult population, to pediatric age groups, despite the lim-
ited data and the large variability of the pediatric ECG sig-
nals. Possible future works will focus on extending the
model for processing 10 s ECGs (e.g., to also include heart
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Figure 3: Scatterplots of the actual subject’s age vs. the predicted age in the adult (left) and pediatric (right) populations.

Table 1: Performance comparison between the age predic-
tor proposed in Attia et al., Lima et al. and in this study,
when all models are trained and tested on the AD dataset.

Model Testing Loss (y)2 ρ RMSE (y)
This study 106.57 0.77 10.32
Attia et al. [2] 116.40 0.75 10.79
Lima et al. [3] 108.00 0.77 10.39

rate variability in the model), and evaluating the functional
age for cardiac risk prediction in the pediatric population.
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